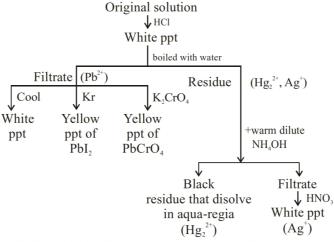
QUALITATIVE ANALYSIS

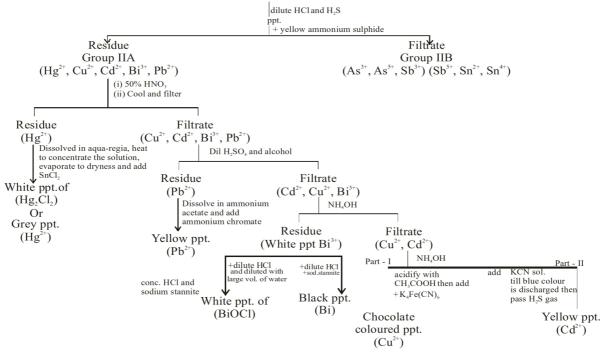
Qualitative Inorganic Analysis

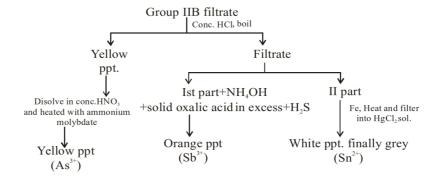
Qualitative inorganic analysis involves the detection of cations (basic radicals) and anions (acid radicals) present in an inorganic compound or a mixture of inorganic compounds. For a systematic study, qualitative analysis may be studied in the following parts:

- (A) Dry tests for inorganic compounds
- (B) Confirmatory tests for basic radicals
- (C) Confirmatory tests for acid radicals

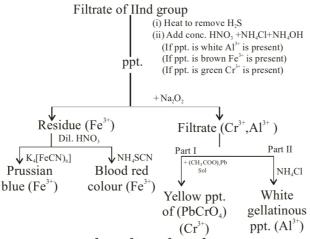

Calssification of Basic Radicals

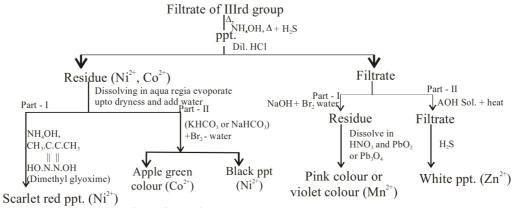
The qualitative analysis of basic radicals is based on the concept of solubility product, solubility and common ions. These concepts play very important role even in the classification of radicals in six groups and their group reagents. The common occuring cations have been divided into six groups.

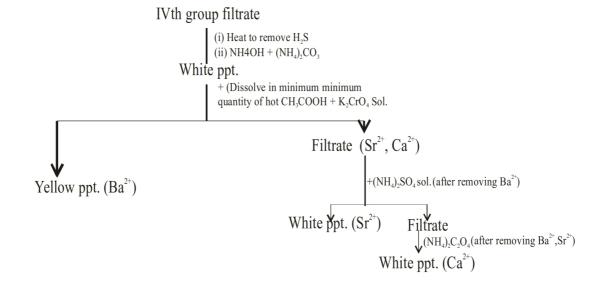

Group	Group reagent	Basic radical	Composition and colour of the		
			ppt.		
I.	Dil. HCl	Ag^+ Pb^{2+}	AgC1White		
		Pb^{2+}	PbCl ₂ White		
		Hg_2^{2+}	Hg_2Cl_2White		
II.A	H ₂ S in the presence	Hg^{2+}	HgSBlack		
	of dil. HCl	2.			
		Pb ²⁺	PbSBlack		
		Bi ³⁺	Bi_2S_3Black		
		Cu ²⁺	CuSBlack		
		Cd^{2+}	CdSYellow		
	H ₂ S in the presence	As ³⁺	$As_2S_3Yellow$		
II.B	of dil. HCl	Sn ⁴⁺	SnS ₂ Yellow		
		Sb ³⁺	$Sb_2S_3Orange$		
		Sn ²⁺	SnSBrown		
III.	NH ₄ OH in the	Fe ³⁺	Fe(OH) ₃ Reddish brown		
	presence of excess				
	of NH ₄ Cl	2.	Cr(OH) ₃ Dirty green		
		Cr ³⁺	Al(OH) ₃ White gelatinous		
		Al ³⁺ Co ²⁺ Ni ²⁺	ppt.		
IV.	H ₂ S in presence of	Co^{2+}	CoSBlack		
	NH ₄ OH	Ni^{2+}	NiSBlack		
		Zn^{2+}	ZnSBluis white		
		Mn ²⁺	MnSBuff (flesh) coloured		
V.	$(NH_4)_2CO_3$ in the	Ba ²⁺ Sr ²⁺	BaCO ₃ White		
	presence of	Sr^{2+}			
	NH ₄ OH	Ca ²⁺	SrCO ₃ White		
			CaCO ₃ White		
VI.	No specific group	Mg^{2+}	$Mg(NH_4)PO_4White$		
	reagent	Na+			
		K+			
Zero	NaOH	N111+	NH ₃ gas is evolved		
Zeio	NaOII	NH ₄ ⁺	11113 gas is evolved		



1. Ist Group Basic Radicals : (Ag⁺, Pb²⁺, Hg²⁺)


2. IInd Group Basic Radicals : Original solution or Ist group filtrate
Original solution or Ist group filtrate
(If Ist group is absent)




IIIrd Group Basic Radicals:

4. IV Group Baisc Radicals: (Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺):

5. Vth Group Basic Radicals : $(Ba^{2+}, Sr^{2+}, Ca^{2+})$

6. VI Group Basic Radical

Filtrate of Vth group

Heat and add $(NH^4)_2C_2O_4$. If any ppt. is obtained. Now add NH_4OH and Na_2HPO_4 skretch with glass rod.

White crystalline ppt.

- 7. Zero Group Basic Radical : It contains NH_4^{\oplus} ion.
 - (a) The salt is heated with NaOH, ammonia is evolved. The ammonia gives white fumes with HCl.
 - (b) NH₄ gives brown ppt. with Nessler's reagent.

Reactions:

$$\begin{aligned} &\text{NH}_4\text{Cl} + \text{NaOH} \longrightarrow \text{NaCl} + \text{NH}_3 + \text{H}_2\text{O} \\ &\text{NH}_3 + \text{HCl} \longrightarrow \text{NH}_4\text{Cl} \\ &\text{NH}_4\text{Cl} + 2\text{K}_2\text{HgI}_4 + 3\text{KOH} \longrightarrow \text{NH}_2\text{HgOHgI} + 7\text{KI} + 2\text{H}_2\text{O} \end{aligned}$$

Reaction involve:

$$\begin{array}{l} \underline{\text{action involve}:} \\ Pb^{2+} \\ PbCl_2 + K_2 CrO_4 & \longrightarrow PbCrO_4 + 2KCl \\ \text{Yellow ppt.} \\ PbCrO_4 + 4NaOH & \longrightarrow Na_2 PbO_2 + Na_2 CrO_4 + 2H_2O \\ Ag^+ \\ AgCl + 2NH_4OH & \longrightarrow Ag(NH_3)_2 Cl + 2H_2O \\ \underline{\text{Diamine silver}(1)} \\ \text{chloride} \\ Ag(NH_3)_2 Cl + 2HNO_3 & \longrightarrow AgCl + 2NH_4NO_3 \\ \underline{\text{White ppt.}} \\ Hg_2^{2+} \\ Hg_2Cl_2 + 2NH_4OH & \longrightarrow \underline{\text{Hg} + \text{Hg}(NH_2)Cl} + \text{NH}_4Cl + 2H_2O \\ \underline{\text{Black}} \\ \\ Hg^{2+} \\ 3HCl + HNO_3 & \longrightarrow NOCl + 2H_2O + 2Cl \\ \underline{\text{2Hg}(NH_2)Cl} + 6Cl & \longrightarrow 2\text{Hg}Cl_2 + 4\text{HCl} + N_2 \\ \underline{\text{Hg} + 2Cl} & \longrightarrow \text{Hg}Cl_2 \\ 3HCl + HNO_3 & \longrightarrow 2H_2O + \text{NOCl} + 2Cl \\ 3HgS + 2NOCl + 4Cl & \longrightarrow 3\text{Hg}Cl_2 + 2NO + 3S \\ \underline{\text{Pb}}^{2+} \\ PbSO_4 + 2CH_3COONH_4 & \longrightarrow Pb(CH_3COO)_{2+}(NH_4)_2SO_4^{-}) \\ \underline{\text{Pb}(CH_3COO)}_2 + K_2CrO_4 & \longrightarrow PbCrO_4 + 2CH_3COOK \\ \end{array}$$

$$Bi^{3+}$$

$$Bi(OH)_3 + 3HCl \longrightarrow BiCl_3 + 3H_2O$$

$$BiCl_3 + H_2O \longrightarrow BiOCl + 3HCl$$

$$BiCl_3 + 3NaOH \longrightarrow Bi(OH)_3 + 3NaCl$$

$$2Bi(OH)_2 + 3Na_2SnO_2 \longrightarrow 2Bi(OH)_3 + 3H_2O$$

$$Sod_s tunnite$$

$$Cu^{2+}$$

$$CuSO_4 + 4NH_4OH \longrightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$$

$$Deep blue$$

$$[Cu(NH_3)_4]SO_4 + 4CH_3COOH \longrightarrow CuSO_4 + 4CH_3COONH_4$$

$$2CuSO_4 + K_4[Fe(CN)_6 \longrightarrow Cu_2[Fe(CN)_6] \downarrow + 2K_2SO_4$$

$$(Coper ferroeyanide choclade brown)$$

$$Cd^{2+}$$

$$[Cd(NH_4)_4]SO_4 + 4KCN \longrightarrow K_2[Cd(CN)_4] + K_2SO_4 + 4NH_3$$

$$K_2[Cd(CN)_4] + H_2S \longrightarrow CdS_4 + 2KCN + 2HCN$$

$$As^{3+}$$

$$As_2S_6 + 10HNO_3 \longrightarrow 2H_3AsO_4 + 10NO_2 + 5S + 2H_2O$$

$$Arcsenic acid (So lub le)$$

$$H_3AsO_4 + 12(NH_4)_2MoO_4 \longrightarrow (NH_4)_3AsO_4 \cdot 12MOO_3 + 21NH_4NO_3 + 12H_2O$$

$$Yellow ppt. of ammonium arsenomolydate$$

$$1e^{3+}$$

$$Fe(OH)_3 + 3HCl \longrightarrow FeCl_3 + 3H_2O$$

$$Soluble$$

$$FeCl_3 + 3NH_4CNS \longrightarrow Fe(CNS) + 3NH_4Cl$$

$$Blood red$$

$$4FeCl_3 + 3K_4[Fe(CN)_6] \longrightarrow Fe_4[Fe(CN)_6]_3 + 12KCl$$

$$Ferri ferroeyanide (Prussian blue)$$

$$Cr^{3+}$$

$$Na_2CrO_4 + Pb(CH_3COO)_2 \longrightarrow PbCrO_4 + 2CH_3COONa$$

$$Yellow ppt.$$

$$Na_2CrO_4 + Pb(CH_3COO)_2 \longrightarrow PbCrO_4 + 2CH_3COONa$$

$$Yellow ppt.$$

$$NaAlO_2 + NH_4Cl + H_2O \longrightarrow Al(OH)_3 + NH_4 + NaCl$$

$$White cot.$$

$$Zn^{2+}$$

$$ZnCl_2 + 2NaOH \longrightarrow Zn(OH)_2 + 2NaCl$$

$$White ppt.$$

$$Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$$

$$(Soluble)$$

$$Na_2ZnO_2 + H_2S \longrightarrow ZnS + 2NaOH$$

$$White ppt.$$

$$Mn^{2+}$$

$$MnCl_2 + 2NaOH \longrightarrow Mn(OH)_2 + 2NaCl$$

$$Mn(OH)_2 + O \longrightarrow MnO_2 + H_2O$$

$$2MnO_2 + 4HNO_3 \longrightarrow 2Mn(NO_3)_2 + 2H_2O + O_2$$

$$2Mn(NO_3)_2 + 5Pb_3O_4 + 26HNO_3 \longrightarrow 2HMnO_4 + 15Pb(NO_3)_2 + 12H_2O$$

$$Permanganic \\ acid (pink)$$

$$Ni^{2+}$$

$$CoCl_2 + 2NaHCO_3 \longrightarrow Co(HCO_3)_2 + 2NaCl$$

$$Co(HCO_3)_2 + 4NaHCO_3 \longrightarrow Na_4Co(CO_3)_3 + 3H_2O + 3CO_2$$

$$Br_2 + H_2O \longrightarrow 2HBr + O$$

$$2Na_4Co(CO_3)_3 + H_2O + O \longrightarrow 2Na_3Co(CO_3)_3 + 2NaOH$$

$$Sod. cobalti carbonate (Green colouration)$$

$$NiCl_2 + 2NaHCO_3 \longrightarrow NiCO_3 + 2NaCl + H_2O + CO_2$$

$$2NiCO_3 + O \longrightarrow Ni_2O_3 + 2CO_2$$

$$Ba^{2+} (barium)$$

$$Ba(CH_3COO)_2 + K_2CrO_4 \longrightarrow BaCrO_4 + 2CH_3COOK$$

$$Sr^{2+} (strontium)$$

$$Sr(CH_3COO)_2 + (NH_4)_2 SO_4 \longrightarrow SrSO_4 + 2CH_3COONH_4$$

$$White ppt.$$

$$Ca^{2+} (calcium)$$

$$Ca(CH_3COO)_2 + (NH_4)_2 C_2O_4 \longrightarrow CaC_2O_4 + 2CH_3COONH_4$$

$$White ppt.$$

DRY TEST

Dry tests are of great importance as these tests give clear indications of the presence of certain radicals. The following tests are performed in dry state:

- (i) Flame test
- (ii) Borax bead test
- (iii) Micro-cosmic salt bead test
- (iv) Charcoal cavity test
- (v) Cobalt nitrate charcoal test

Flame Test

Alkali and Alkaline earth Metals Salts give characteristic colour when introduced in Bunsen flame. The colour produced by them are given below.

Li	Grimson red	Ca	Brick red
Na	Golden yellow	Sr	Crimson
K	Violet	Ba	Apple green

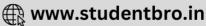
Note:

Flame test should not be performed in the presence of As, Sb, Bi, Sn and Pb as these radicals form alloy with platinum and hence, the wire is spoiled.

Borax bead test

On heating borax the colourless glassy bead formed consists of sodium metaborate and boric anhydride.

$$Na_{2}B_{4}O_{7}K.10H_{2}O \xrightarrow{\quad Heat \quad} Na_{2}B_{4}O_{7} \xrightarrow{\quad Heat \quad} \underbrace{2NaBO_{2} + B_{2}O_{3}}_{Glassy\ bead}$$


On heating with a coloured salt, the glassy bead forms a coloured metaborate in oxidising flame.

$$CuSO_4 \longrightarrow CuO + SO_3$$

$$CuO + B_2O_3 \longrightarrow Cu(BO_2)_2$$
Copper metaborate
(Blue)

	Colour of the bead in				
Metal	Oxidisin	g-flame	Reducing-flame		
	Hot	Cold	Hot	Cold	
Copper	Green	Blue	Colourless	Brown-red	
Iron	Brown-yellow	Pale-yellow	Bottle green	Bottle green	
Chromium	Green	Green	Green	Green	
Cobalt	Blue	Blue	Blue	Blue	
Manganese	Violet	Amethyst red	Grey	Grey	
Nickel	Violet	Brown	Grey	Grey	

Microcosmic salt bead test

This test is similar to borax bead test. When microcosmic salt is heated, a colourless transparent bead of sodium metaphosphate is formed.

Na(NH₄)HPO₄
$$\longrightarrow$$
 NaPO₃ + NH₃ + H₂O
Sodium
metaphosphate

Sodium metaphosphate combines with metallic oxides to form orthophosphates which are usually coloured. The shade of the colour gives a clue regarding the presence of metal.

	Colour of the bead in				
Metal	Oxidisin	g-flame	Reducin	ucing-flame	
	Hot	Cold	Hot	Cold	
Copper	Green	Blue	Colourless	Red	
Iron	Yellow or	Yellow	Yellow	Colourless	
	reddish-brown				
Chromium	Green	Green	Green	Green	
Manganese	Violet	Violet	Colourless	Colourless	
Cobalt	Blue	Blue	Blue	Blue	
Nickel	Brown	Brown		Grey	

Test for acid radicals: Add dil. HCl or H₂SO₄ to a small amount of substanceand warm gently, observe.

Carbonate or CO_3^{2-} :

(i) Brisk effervescences of colourless gas CO₂; may be carbonate.

$$CaCO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2O + CO_2 \uparrow$$

(ii) The gas turns lime water milky

$$CO_2 + Ca(OH)_2 \xrightarrow{} CaCO_3 \downarrow + H_2O$$
Milky

(iii) Excess of passage of gas through lime water is milkyness disappears

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2(Soluble)$$

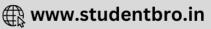
Sulphite or SO_3^{2-} :

(i) Colourless gas with suffocating odour of burning sulphur; may be sulphite.

$$CaSO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2O + SO_2 \uparrow$$

(ii) The gas turns orange colour of acidic K₂Cr₂O₇ to green

$$K_2 Cr_2 O_7 + H_2 SO_4 + 3SO_2 \longrightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + H_2 O$$
Orange Green


Note: CO₂ does not turns orange colour of acidic K₂Cr₂O₇ to green

Sulphide (S^{2-}) :

(i) The sulphide salts from H₂S which smells like rotten eggs.

$$Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S \uparrow$$

(ii) On exposure to this gas, the lead acetate paper turns black due to the formation of lead sulphide.

$$Pb(CH_{3}COO)_{2} + H_{2}S \xrightarrow{} PbS \atop Black\ ppt.} + 2CH_{3}COOH$$

(iii) The sulphides also turn sodium nitroprusside solution violet (use sodium carbonate extract for this rest).

$$Na_2S + Na_2[FeNO(CN)_5] \longrightarrow PbS_{Black ppt.} + 2CH_3COOH$$

Note: Sulphide of lead, calcium, nickel, cobalt antimony and stannic are not decomposed with dil. H₂SO₄. Conc. HCl should be used for their test. However, brisk evolution of H2S takes place even by use of dil. H2SO4 if a pinch of zinc dust is added.

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + 2H$$

$$HgS + 2H \longrightarrow Hg + H_2S$$

Acetate (CH₃COO⁻)

(i) Acetates decompose to give acetic acid vapours having characteristic smell of vinegar.

$$2CH_3COONa + H_2SO_4 \longrightarrow 2CH_3COOH + Na_2SO_4$$

(ii) All acetates are soluble in water and their aqueous solution on addition to neutral FeCl₃ solution develops a blood red colour due to the formation of ferric acetate.

$$FeCl_3 + 3CH_3COONa \longrightarrow (CH_3COO)_3 Fe + 3NaCl$$
Blood red colour

Note:

- The ferric chloride solution supplied in the laboratory is always acidic due to hydrolysis. It is made neutrla by
 the addition of dil. solution of NH₄OH drop by drop with constant stirring till the precipitate formed does not
 dissolve. The filtrate is called neutral ferric chloride solution.
- 2. Before testing acetate in the aqueous solution by FeCl₃, it must be made sure that the solution does not contain,

(i)
$$CO_3^{2-}$$
 (ii) SO_3^{2-} (iii) PO_4^{3-} (v) I^{-}

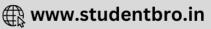
since these also combine will Fe⁺³. Therefore the test of acetate should be performed by neutral ferric chloride solution only after the removal of these ions by AgNO₃ solution.

Chloride (Cl⁻)

(i) Colourless pungent fumes of hydrogen chloride are evolved.

$$NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl \uparrow$$

(ii) The gas evolved forms white fumes of ammonium chloride with NH₄OH.


$$NH_4OH + HCl \longrightarrow NH_4Cl + H_2O$$
White fumes

(iii) The gas evolved or solution of chloride salt forms a curdy precipitate of silver chloride with silver nitrate solution.

$$AgNO_3 + HCl \longrightarrow AgCl \downarrow + HNO_3$$

(iv) Yellowish-green chlorine gas with suffocating odour is evolved on addition of MnO₂ to the above reaction mixture.

$$2$$
NaCl + MnO₂ + 3 H₂SO₄ \longrightarrow 2 NaHSO₄ + MnSO₄ + 2 H₂O + Cl₂

Note: The curdy precipitate of AgCl dissolves in ammonium hydroxide forming a complex salt.

$$AgNO_3 + 2NH_4OH \longrightarrow AgCl(NH_3)_2Cl + 2H_2O$$

(v) Chromyl chlorde test: When solid chloride is heated with conc. H_2SO_4 in presence of $K_2Cr_2O_7$, deep red vapours of chromyl chloride are evolved.

$$\begin{split} \text{NaCl} + \text{H}_2 \text{SO}_4 & \longrightarrow \text{NaHSO}_4 + \text{HCl} \\ \text{K}_2 \text{Cr}_2 \text{O}_7 + 2 \text{H}_2 \text{SO}_4 & \longrightarrow 2 \text{KHSO}_4 + 2 \text{CrO}_3 + \text{H}_2 \text{O} \\ \text{CrO}_3 + 2 \text{HCl} & \longrightarrow \text{CrO}_2 \text{Cl}_2 & + \text{H}_2 \text{O} \\ & \text{Chromyl chloride} \end{split}$$

These vapours on passing through NaOH solution, form the yellow solution due to the formation of sodium chromate.

$$CrO_{2}Cl_{2} + 4NaOH \xrightarrow{\hspace*{1cm}} Na_{2}CrO_{4} + 2NaCl + 2H_{2}O \\ \text{Yellow colour}$$

The yellow solution neutralized with acetic acid gives a yellow solution due to the formation of sodium chromate.

$$Na_2CrO_4 + Pb(CH_3COO)_2 \longrightarrow PbCrO_4 + 2CH_3COONa$$
Yellow ppt

Note:

- 1. This test is not given by the chloride of mercury, tin, silver lead and antimony.
- 2. The chromyl chloride test is a always to be performed in a dry test tube otherwise the chromyl chloride vapours will be hydrolysed in the test tube.

$$CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$$

- 3. Bromides and iiodies do not give this test.
- 2. Bromide (Br⁻)
 - (i) Reddish-brown fumes of bromine are formed.

$$NaBr + H_2SO_4 \longrightarrow NaHSO_4 + HBr$$

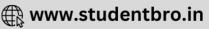
 $2HBr + H_2SO_4 \longrightarrow Br_2 + 2H_2O + SO_2$

(ii) More reddish-brown fumes of bromine are evolved when MnO₂ is added

$$2NaBr + MnO_2 + 3H_2SO_4 \longrightarrow 2NaHSO_4 + MnSO_4 + 2H_2O + Br_2$$

(iii) The aqueous solution of bromide or sodium carbonate extract gives pale yellow precipitate of silver bromide which partly dissolves in excess of NH₄OH forming a soluble complex.

$$NaBr + AgNO_{3} \longrightarrow \underset{Pale \ yellow \ ppt.}{AgBr} \downarrow + NaNO_{3}$$


$$AgBr + 2NH_4OH \longrightarrow Ag(NH_3)_2 Br + 2H_2O$$

- 3. Iodide (I⁻)
 - (i) Violet vapours of iodine are evolved.

$$2KI + 2H_2SO_4 \longrightarrow 2KHSO_4 + 2HI$$

$$2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O$$

(ii) Violet vapours with starch produce blue colour.

$$I_2 + Starch \longrightarrow Blue colour$$

(iii) More violet vapours are evolved when MnO₂ is added.

$$2KI + MnO_2 + 3H_2SO_4 \longrightarrow 2KHSO_4 + MnSO_4 + 2H_2O + I_2$$

- 4. Nitrate (NO₃)
 - (i) Light brown fumes of nitrogen dioxide are evolved.

$$NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$$

$$2HNO_3 \longrightarrow 2H_2O + 4NO_2 + O_2$$

(ii) These fumes intensify when copper turnings are added.

$$Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

(iii) Brown ring test: An aqueous solution of salt containing nitrate is mixed with freshly solution of salt solution and conc. H_2SO_4 is poured in test tube from sides, a brown ring is formed an account of the formation of a complex at the junction of two liquids.

$$NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$$

$$6FeSO_4 + 2HNO_3 + 3H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + 4H_2O + 2NO$$

$$[Fe(H_2O)_6]SO_4.H_2O + NO \longrightarrow [Fe(H_2O)_5NO]SO_4 + 2H_2O$$
Ferrous subbate

Rrown ring

